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2 PRACTICAL EXAMPLE

1 Introduction

The brain - that’s my second most favourite organ!
– Woody Allen

!
Supported versions
This guide applies to 0.0.x versions of Insane for Java library.

!
Requirements
Insane for Java library uses latest Java specificities, such as iterators. It is
recommended to use Java version 1.6.0 18 or later.

Insane (“instrumented artificial neural environment”) is designed to manipulate artifi-
cial neural networks. The following characteristics are seeked:

• Easiness-to-use

• Highly configurable solution

• Multiple initialization and training methods

• Efficient training and evaluation

• Stable memory consumption

• Training and evaluation decorrelation

• Lightweight solution executable on mobile devices (at least the evaluation part)

i
About this guide
This document is a step-by-step introduction to Insane’s characteristics using
the Java programming language.
Insane’s main library and examples source code can be dowloaded from In-
sane’s official website at http://www.insane-network.org.

2 Practical example

2.1 Description

This infamous example demonstrates how to create a simple multi-layered neural net-
work. This network learns from the exclusive “or” table described by table 1, were
“true” and “false” boolean values are respectively transposed to 1.0 and 0.0 values.

2.2 Source code

The source code is provided hereafter:
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2.2 Source code 2 PRACTICAL EXAMPLE

OpA OpB Result

false false false
false true true
true false true
true true false

Table 1: The exclusive “or” logical table

public final class ExclusiveOrBackPropagat ion {

private static void p r i n t l n (double . . . values ) {
int max = values . leng th − 1;
f o r (int i =0; i<max ; i ++) {

System . out . p r i n t ( values [ i ] ) ;
System . out . p r i n t ( ’ ’ ) ;

}

System . out . p r i n t l n ( values [max ] ) ;
}

public static void main (String [ ] args ) {
try {

Tr a i n i ng In fo rma t i o n [ ] i n f o = new Tr a i n i ng I n fo rma t i o n [ ] {
new Tr a i n i ng I n fo rma t i o n (new double [ ]{0 . 0 , 0.0} , new

double [ ]{0 . 0} ) ,
new Tr a i n i ng I n fo rma t i o n (new double [ ]{0 . 0 , 1.0} , new

double [ ]{1 . 0} ) ,
new Tr a i n i ng I n fo rma t i o n (new double [ ]{1 . 0 , 0.0} , new

double [ ]{1 . 0} ) ,
new Tr a i n i ng I n fo rma t i o n (new double [ ]{1 . 0 , 1.0} , new

double [ ]{0 . 0} )
} ;

Ac t i va t i onFunc t i on a c t i v a t i o n = new Sigmoid ( ) ;

/ / Set l aye rs p r o p e r t i e s
NetworkLayerProper t ies [ ] props = {

new NetworkLayerProper t ies (2 , a c t i v a t i o n ) ,
new NetworkLayerProper t ies (1 , a c t i v a t i o n )

} ;

NeuralNetwork nnet = new NeuralNetwork (2 , props ) ;

/ / Conf igure back−propagat ion t r a i n i n g using d e f a u l t
/ / c o n f i g u r a t i o n
/ / The c o n f i g u r a t i o n parameters ( i e l ea rn i ng ra te and
/ / momentum) may vary depending on the nature o f the
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/ / source t r a i n i n g data
Random rand = new Random ( ) ;
BackPropagat ionConf igurat ion c o n f i g u r a t i o n = new

BackPropagat ionConf igurat ion ( ) ;
TrainingMethod t ra in ingMethod = new BackPropagation ( rand ,

c o n f i g u r a t i o n ) ;

/ / Set o ther t r a i n i n g c o n s t r a i n t s
Tra in i ngCons t ra i n t s c o n s t r a i n t s = new Tra in i ngCons t ra i n t s

( ) ;
/ / I n d i c a t e the expected MSE
c o n s t r a i n t s . setMaxError (1E−4) ;
/ / Make sure the t r a i n i n g process termina tes
c o n s t r a i n t s . setMaxEpochs (1500) ;

/ / T ra in the network w i th un i f o rm ly chosen values
N e t w o r k I n i t i a l i z e r . i n i t i a l i z e (new U n i f o r m D i s t r i b u t i o n (

rand ) , nnet ) ;
T ra in ingResu l t s r e s u l t s = t ra in ingMethod . t r a i n (

cons t ra i n t s , TrainingMethod . ALL ITEMS , nnet , new
NoPruning ( ) , i n f o ) ;

/ / I t may happen t h a t the t r a i n i n g gets stuck i n a l o c a l
/ / minimum . In t h i s case , the requ i red maximum e r r o r
/ / could not be reached a f t e r running a l l epochs , even
/ / i f back propagat ion uses a momentum . . .
i f ( ! r e s u l t s . v a l i d ( c o n s t r a i n t s ) ) {

System . out . p r i n t l n ( ”MSE i s ” + r e s u l t s .
getMeanSquareError ( ) ) ;

System . out . p r i n t l n ( ” Caution : the expected MSE i s not
reached ” ) ;

System . out . p r i n t l n ( ” The evaluated values may not be
accurate ” ) ;

System . out . p r i n t l n ( ” Please run again ” ) ;
System . out . p r i n t l n ( ) ;
return ;

}

System . out . p r i n t l n ( ”MSE: ” + r e s u l t s .
getMeanSquareError ( ) ) ;

System . out . p r i n t l n ( ” Best epoch : ” + r e s u l t s .
getBestEpoch ( ) ) ;

double [ ] ou tputs ;
f o r ( T r a i n i ng In f o rma t i o n t i : i n f o ) {

System . out . p r i n t l n ( ) ;
System . out . p r i n t ( ” Inpu t values : ” ) ;
p r i n t l n ( t i . ge t InputValues ( ) ) ;
System . out . p r i n t ( ” Expected output : ” ) ;
p r i n t l n ( t i . getExpectedOutputValues ( ) ) ;
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2.3 Results 2 PRACTICAL EXAMPLE

System . out . p r i n t ( ” Evaluated output : ” ) ;

/ / Use the network to produce output values
outputs = nnet . eva luate ( t i . ge t InputValues ( ) ) ;
p r i n t l n ( outputs ) ;

}
} catch ( Except ion e ) {

e . p r in tS tackTrace ( ) ;
}

}
}

The maximum error indicates the maximum deviation between theorical (provided
during training) and evaluated outputs of the neural network. To make sure the train-
ing process does not loop endlessly, a maximum number or epochs1 is also defined.
These two constraints can be modified to find the best compromise between the re-
quired precision and the maximum delay necessary to train the network.

2.3 Results

An execution of this source code is performed in less than 1 second. The printed
results show that the neural network successfully learnt from the exclusive ”or” logical
table training information as each evaluation is very close to the expected output:

MSE: 9.992529126095958E−5
Best epoch : 754

Inpu t values : 1.0 1.0
Expected output : 0.0
Evaluated output : 0.006710131419360526

Inpu t values : 0.0 1.0
Expected output : 1.0
Evaluated output : 0.9956579576799316

Inpu t values : 0.0 0.0
Expected output : 0.0
Evaluated output : 0.003955773067477172

Inpu t values : 1.0 0.0
Expected output : 1.0
Evaluated output : 0.995627804669113

1An epoch refers to the period in which the whole set of training information is presented to
the training process.
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i
Input values permutations
The training process modifies the order of the training information before start-
ing an epoch. Indeed, the order of the results may vary. This order has no
impact on the accuracy of the training operation.

2.4 Unsuccessful training

As discussed in section 4.7, it may happen that the training process does not succeed
due to local minima of the error function. The maximum error (i.e. maximum deviation
between theorical and evaluated outputs) allowed could not be reached. In this case,
the following error message is displayed:

MSE i s 0.8556225884761905
Caution : the expected MSE i s not reached
The evaluated values may not be accurate
Please run again

This may come (among other parameters) from inappropriate initial weights distribu-
tion heuristics2 and configuration settings. Re-running the training process is then
required.

3 Creating networks structures

3.1 Definition

A multi-layered neural network (called “perceptron”) is made of one or (usually) more
layers. Each layer is composed of a list of neurons (as described by figure 1). A neu-
ron responds to an input signal (i.e. an array of values) to produce an activation level
(a single value). Consequently, the number of neurons of the last layer corresponds
to the number of outputs of the neural network.

As illustrated by figure 2, each neuron produces a result in two steps. The input
values are first mixed together (along with a bias) using a combination function c
which produces a single value. The most commonly used combination function is
called “linear combination function”. This function is defined as follows:

c (x1, . . . , xk) = −b+
∑
p

wp × xp

The resulting value of the combination function is then given to an activation function
a to determine the activation degree (i.e. final result) of this particular neuron.

2This particular point will be discussed in section 4.3.
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3.2 Source code

Creating a neural network requires to indicate the number of layers and the compo-
sition of each layer (number of neurons and behaviour of each neuron), as shown by
the following (partial) source code:

/ / Def ine the network p r o p e r t i e s :
/ / − 2 laye rs
/ / − F i r s t l a ye r conta ins 2 neurons wi th no i n i t i a l b ias
/ / − Second laye r conta ins a s i n g l e neuron wi th an i n i t i a l
/ / b ias o f 0.5
Ac t i va t i onFunc t i on a c t i v a t i o n F u n c t i o n = new Sigmoid ( ) ;
NetworkLayerProper t ies [ ] props = {

new NetworkLayerProper t ies (2 , a c t i v a t i o n F u n c t i o n ) ,
new NetworkLayerProper t ies (1 , 0 .5 , a c t i v a t i o n F u n c t i o n )

} ;

/ / Create a network which expects 2 inpu ts ( i . e . an ar ray o f
/ / 2 doubles i s requ i red to ask the network f o r an eva lua t i on )
/ / The eva lua t i on r e s u l t i s an ar ray which conta ins a s i n g l e value
/ / ( l a s t l a ye r conta ins only one neuron )
NeuralNetwork nnet = new NeuralNetwork (2 , props ) ;

4 Training networks

Training a neural network consists in performing synaptic weights and biases assign-
ments to match a mathematical function defined by a set of samples.

The training process is the most costly phase when using a neural network. The
training time and accuracy depend on many parameters:

• The training method

• The number of different training information

• The network structure (i.e. the number of layers, the number of neurons per
layer, the combination and activation functions)

• The initial weights and biases values

• The maximum number of epochs

• The maximum error required

i
The “Mean Square Error” (MSE), also called quadratic error, corresponds to
the sum of square deviations between evaluated (practical) results and theo-
rical outputs. This error is usually determined during the training phase. The
aim of the training is to update the network weights so that this error is mini-
mized.
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4.1 Training methods classification

Insane supports both stochastic and sequential training methods.

Stochastic training method
A stochastic (or “incremental”) training method modifies the weights and bi-
ases values of the neural network being trained each time a training informa-
tion item is presented. This means that these values are modified several
times during a given training epoch.

Sequential training method
Contrary to a stochastic approach, a sequential (or “batch”) training method
computes the global error function for all training information items before
modifying the current weights and biases values. Hence these values are
modified once per training epoch.

In the particular case of sequential methods, Insane provides the ability to use training
information from a source file3

i
Pros and cons of batch training from a file
This process is recommended when a large amount of training information is
used, as it guarantees small memory consumption. The main drawback is the
loss of good performances: file opening and closing operations are time and
processor consuming.

Compared with the use of a list of pre-loaded training information items, the training
time is extended in an average order of magnitude of 104.

4.2 Overall process

The actual training of a neural network requires to select an appropriate training
method (i.e. algorithm). The whole training process is composed of the following
steps:

1. Create a neural network with default biases values

2. Initialize the weights of this network, either from a previously saved network or
generating new values using a heuristic

3. Select and configure an appropriate training method (back-propagation for ex-
ample)

4. Set training constraints, such as the maximum error and the maximum number
of running epochs. The training process will fail when none of these constraints
is provided (to avoid endless looping)

5. Get training information

3Please refer to section 7.2 for further explanations and source code.
4Please refer to benchmarks for further details and comparisons.
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6. Use the training method to train the network based on the training information.
This training phase may integrate a pruning of the network

Although the expected MSE is normally reached, robust implementations may require
to analyze the training results, such as in the provided example of section 2.

4.3 Setting initial weights and biases

Without any initialization, each weight and bias of a newly created neural network is
set to 0.0. These internal weights and biases must be initialized with non-zero values
in order to successfully execute a converging training of the network.

4.3.1 Setting default biases

An initial bias value in range [0.0, 1.0] can be assigned to each layer of a neural
network. This bias is set in the network layer properties when creating the network
stucture. This bias value may impact the training accuracy.

4.3.2 Generating initial weights

The initial weights and biases values attributed to the neural network before training
must be chosen with care. Combined the biases, they condition the whole training
process. A good distribution of initial values can avoid local minima and may reduce
the required number of epochs to reach the global minimum error up to 53, 9%5.

There is no good or bad heuristic to initialize weights with. The optimal strategy de-
pends on the training algorithm, the structure of the network and the set of training
information.

Insane suggests different distribution strategies for generating initial weights values.
Each strategy is applied by the common weights initializer, which makes sure extreme
values (i.e. −1.0 and 1.0, depending on the distribution strategy) and 0.0 are never
used.

i
About a fixed value strategy
Empirical tests demonstrate that a strategy which uses a pre-defined constant
value (each weight has the same value) is not applicable as training methods
never reach the global minimum of the error function.

5Source: Y. F. Yam, Tommy W. S. Chow and C. T. Leung. A new method in determining
initial weights of feedforward neural networks for training enhancement. Neurocomputing, vol. 16,
issue 1, p. 23−−32, 1996.
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4.3.3 Uniform distribution

The uniform distribution (see figure 3) is historically the first distribution implemented
in Insane. It provides average training results.

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1

P
er

ce
nt

ag
e

of
pi

ck
s

Intervals

Uniform distribution evaluation for 10000 picks

Figure 3: Initial weights picks in range [0.0, 1.0]

4.3.4 Symmetrical uniform distribution

The symmetrical uniform distribution (see figure 4) picks values in range [−1.0, 1.0]
instead of [0.0, 1.0].

4.3.5 Normal distribution

The normal distribution picks values around 0.5, following a gaussian distribution il-
lustrated by figure 5. Empirical results show that such distribution gives better results
than the default uniform distribution.

4.3.6 Symmetrical normal distribution

Based on the simple normal distribution presented in section 4.3.5, the symmetrical
normal distribution picks values around −0.5 and 0.5, following a double gaussian
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Figure 4: Initial weights picks in range [−1.0, 1.0]
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Figure 5: Initial weights picks in range [0.0, 1.0]
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distribution illustrated by figure 6. Empirical results show that such distribution gives
better results than the default uniform distribution.

0

1

2

3

4

5

6

7

-1 -0.5 0 0.5 1

P
er

ce
nt

ag
e

of
pi

ck
s

Intervals

Symmetrical normal distribution evaluation for 10000 picks

Figure 6: Initial weights picks in range [−1.0, 1.0]

4.4 Obtaining training information

The example of section 2 partially indicates how to train a network using coded training
information (i.e. the training information list is part of the source code of this example).

In most cases, training information consists of a large amount of data which must be
loaded from external sources.

Insane provides default functionalities for loading (resp. saving) training information
either from source (resp. destination) files and streams.

4.4.1 Source code

Here is a simple example of training information storage and retrieval using files (ma-
nipulating input and output streams is similar):

public final class SaveLoadTra in ingInformat ionTest {

public static void main (String [ ] args ) {
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try {
/ / Change wi th your own paths
F i l e i n f o F i l e 1 = new F i l e ( ” i n f o . dat ” ) ;
F i l e i n f o F i l e 2 = new F i l e ( ” i n fo copy . dat ” ) ;

/ / Def ine t r a i n i n g i n fo rma t i on
Tr a i n i ng I n fo rma t i o n [ ] i n f o = new Tr a i n i ng I n fo rma t i o n [ ] {

new Tr a i n i ng I n fo rma t i o n (new double [ ]{0 . 0 , 0.0} , new
double [ ]{0 . 0} ) ,

new Tr a i n i ng I n fo rma t i o n (new double [ ]{0 . 0 , 1.0} , new
double [ ]{1 . 0} ) ,

new Tr a i n i ng I n fo rma t i o n (new double [ ]{1 . 0 , 0.0} , new
double [ ]{1 . 0} ) ,

new Tr a i n i ng I n fo rma t i o n (new double [ ]{1 . 0 , 1.0} , new
double [ ]{0 . 0} )

} ;

/ / Save to a f i l e
Tra in ing In fo rmat ionSaver saver = new

Defau l tT ra in ing In fo rma t ionSaver ( ) ;
saver . save ( in fo , i n f o F i l e 1 ) ;

/ / Load and s to re again to compare f i l e s
Tra in ing In fo rmat ionLoader loader = new

Defau l tT ra in ing In fo rma t ionLoader ( ) ;
L i s t<Tra in ing In fo rma t ion> i n f o L i s t = loader . load (

i n f o F i l e 1 ) ;
i n f o = Tra in ingIn format ionManager . toAr ray ( i n f o L i s t ) ;

saver . save ( in fo , i n f o F i l e 2 ) ;
} catch( Except ion e ) {

e . p r in tS tackTrace ( ) ;
}

}
}

! Make sure to modify the files paths before running this example.

i
The default loader allows to retrieve training information stored using the de-
fault saver. The training information is first retrieved in a list to allow easy
manipulations (adding or removing training information).

Insane provides complementary operations, such as the ability to load each training
information item separately.
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4.4.2 Commenting saved training information

The default training information loader allows to manually add empty lines and add
comments using ’%’ in a similar way the network loader does.

4.5 Executing a supervised training method

The aim of a supervised training method is to make the neural network learn from
samples (a set of training information). Two major parameters are seeked:

• Fast convergence

• Local minima avoidance

Insane currently supports the training methods presented hereafter.

4.5.1 Back-propagation

Insane provides a stochastic implementation of the common back-propagation (“BP”)
method. This method asks for two configuration parameters: a learning rate and
a momentum. Both parameters must be in range [0, 1]. Default values should get
good results for most cases, however it is recommended to manually modify these
parameters depending on the nature of the training information.

i
About a batch version
This method was primarily proposed in batch mode, where the network
weights and biases are modified once per epoch, after the whole set of sam-
ples has been presented. Empirical evaluations demonstrated that the incre-
mental version was faster and provided more accurate results.

4.5.2 Resilient propagation

The resilient propagation (“RPROP”) runs in sequential mode. It appears to be a very
fast method which gives minimal errors, although it tends to frequently diverge using
default parameters values.

For example, when the RPROP algorithm is used in placed of the back-propagation
training method (setting a positive momentum of 1.5) and initial weights are correclty
chosen, the following output is produced:

MSE: 8.14394420217272E−5
Best epoch : 54

Inpu t values : 0.0 0.0
Expected output : 0.0
Evaluated output : 1.1981904535834107E−10
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I npu t values : 0.0 1.0
Expected output : 1.0
Evaluated output : 0.9966610690534616

Inpu t values : 1.0 0.0
Expected output : 1.0
Evaluated output : 0.9999999999999902

Inpu t values : 1.0 1.0
Expected output : 0.0
Evaluated output : 1.1952585154914498E−10

To obtain comparable mean square errors (and better evaluation results), the opti-
mal number of training epochs is reduced to 54, compared with 754 epochs for the
traditional back-propagation (please refer to section 2.3 to compare results). . .

!

Local minima issue
This is the default RPROP method. While this method can be extremely fast
in converging to a solution, it still suffers from the local minima problem. This
means that, depending on the initial weights of the neural network, this method
may not converge to the global optimum. Using initial uniformly distributed
weights, this method usually gets stuck around a local minimum of 0.5, from
which it cannot escape, as shown in next execution results.

MSE i s 0.5005144807007855
Caution : the expected MSE i s not reached
The evaluated values may not be accurate
Please run again

4.5.3 Mixed training method

This training method is built on top of all other training methods. It allows to call other
training methods sequentially. Each training method is invoked until its associated
constraints are met (i.e. the expected MSE is obtained or the maximum number of
epochs is reached).

i Note that the expected MSE can be reach although all participating training
methods have not been invoked.

4.6 Pruning the network

Pruning
Pruning techniques aim to reduce the number of active connection between
neurons, thus improving the network ability to extrapolate from unkown inputs.
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The pruning process is executed each time an epoch terminates. The pruning method
is specified when calling the main training operation of a training method.

Insane currently defines the pruning techniques described hereafter.

4.6.1 No pruning method

The default pruning technique implemented by Insane, called NoPruning, consists
in leaving the network “as is” (i.e. without modifying any weight or bias). Alterna-
tively, a null parameter can be set to the training method in order to indicate that no
pruning applies.

4.6.2 Threshold pruning method

This pruning method disables all weights or biases values below a predefined thresh-
old by setting their values to zero.

4.7 Analyzing training results

As previously said, it may happen that the training process fails as it gets stuck inside
a local minimum. In this case, the resulting error is greater than the expected error.
Among others, this may occur due to an unlucky randomization of the initial weights
or a non optimal configuration of the training method.

Insane provides complete information to determine whether the training process suc-
ceeded or failed. A training result is composed of:

• The best MSE obtained during the training (or the first MSE below the required
MSE)

• The epoch count of this MSE (best epoch)

Adding the information of the best epoch is useful when one want to determine the
most appropriate maximum number of training epochs: it is pointless to allow a maxi-
mum of 100000 epochs when the MSE is usually reached after 500 epochs. . .

5 Evaluating inputs

Insane offers three operations to perform inputs evaluation.
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5.1 Common evaluation

The evaluate(double[]) operation is usually used to perform an evaluation. In
this case, the provided argument is internally duplicated to the first layer’s inputs array
before starting the evaluation.

5.2 Constrained evaluation

It may happen that the running environment requires to save time and memory space.
In this case, the getInputs() and evaluate() operations can be used:

1. Use getInputs() to set the normalized input values within the inputs array

2. Use evaluate() to perform the evaluation of the inputs and get the evalua-
tion result in return

A typical example is provided hereafter:

public final class Const ra inedEvaluat ion {

public static void main (String [ ] args ) {
try {

/ / 1 . Create a neura l network
int nInputs = . . . ;
NetworkLayerProper t ies [ ] props = . . . ;
NeuralNetwork nnet = new NeuralNetwork ( nInputs , props ) ;

/ / 2 . Tra in the network
. . .

/ / 3 . Perform a const ra ined eva lua t i on
double [ ] i npu ts = nnet . ge t Inpu ts ( ) ;

/ / 31. Modify the i npu t values
i npu ts [ 0 ] = . . . ;
. . .

/ / 32. Evaluate the new inpu t values
double [ ] ou tputs = nnet . eva luate ( ) ;

} catch ( Except ion e ) {
e . p r in tS tackTrace ( ) ;

}
}

}

i Note that Insane also provides the getOutputs() operation to retrieve the
evaluation results.
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6 Saving and restoring networks

Saving networks is a very important feature to avoid a training phase each time a
network is created. It offers the ability to save the network structure as well as its
weights and biases to a destination stream. This stream can be loaded to re-build the
network at a later time.

6.1 Description

The following example demonstrates how to save and load a network using the default
saver and loader. Finally, the restored network is saved to another file to verify it was
correctly loaded. To make it simple, the saved network is not trained.

6.2 Source code

! Make sure to modify the files paths before running this example.

public final class SaveLoadNetwork {

public static void main (String [ ] args ) {
try {

/ / Change wi th your own paths
F i l e ne tF i l e1 = new F i l e ( ” network . net ” ) ;
F i l e ne tF i l e2 = new F i l e ( ” network copy . net ” ) ;

/ / Create a l o g i s t i c neura l network
Ac t i va t i onFunc t i on a c t i v a t i o n = new Sigmoid ( ) ;
NetworkLayerProper t ies [ ] props = {

new NetworkLayerProper t ies (4 , 0 .5 , a c t i v a t i o n ) ,
new NetworkLayerProper t ies (2 , a c t i v a t i o n )

} ;

NeuralNetwork nnet = new NeuralNetwork (5 , props ) ;

/ / Assign randomly d i s t r i b u t e d weights
N e t w o r k I n i t i a l i z e r . i n i t i a l i z e (new U n i f o r m D i s t r i b u t i o n (new

Random ( ) ) , nnet ) ;

NeuralNetworkSaver saver = new Defaul tNeuralNetworkSaver
( ) ;

saver . save ( nnet , ne tF i l e1 ) ;

NeuralNetworkLoader loader = new
Defaul tNeuralNetworkLoader ( ) ;

nnet = loader . load ( ne tF i l e1 ) ;
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/ / Save a copy of t h i s network
saver . save ( nnet , ne tF i l e2 ) ;

} catch( Except ion e ) {
e . p r in tS tackTrace ( ) ;

}
}

}

6.3 Commenting a saved network

The default neural network loader allows to manually add empty lines and add com-
ments using ’%’. A comment can follow some information on a given line (which
means that only the right part of the line is commented).

For example, the default network loader is able to parse this commented network:

% This i s a commented example o f a saved
% neura l network using the d e f a u l t saver

% Header to make sure t h a t the f o l l o w i n g
% in fo rma t i on descr ibes an Insane neura l network
Insane network d e s c r i p t i o n

% The network expects 3 e n t r i e s and i s made of
% 2 laye rs (1 hidden laye r and 1 output l aye r )
3 2

% The f i r s t l a ye r has the f o l l o w i n g c h a r a c t e r i s t i c s :
% − 3 neurons
% − bias value o f 0.2
% − sigmoid a c t i v a t i o n f u n c t i o n
3 0.2 sigmoid

% The second laye r i s def ined as f o l l o w s :
2 0.5 sigmoid % Bias equals 0.5

% Weights o f the f i r s t l a ye r ( a s i n g l e l i n e per neuron )
0.63468314562631 0.39658242179123 0.28137518464209 0.59493772158695
0.12796423914789 0.50434285634176 0.85797599570718 0.72043025541313
0.66234759805424 0.04564729968697 0.09234072935261 0.24969324045428

% Weights o f the second laye r ( a s i n g l e l i n e per neuron )
0.85421334552185 0.57034562635145 0.25964506887161 0.46856497405905
0.53224535189452 0.99319286370061 0.20919801652207 0.04530912567847
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7 Miscellaneous

7.1 Multi-layered neural networks design

According to Kevin Swingler6, the best way to design the appropriate multi-layered
network consists in verifying the estimated error using both the same set of training
information and a set of extra (test) information. He presents a simple set of heuristics
for arriving at a correct neural network model:

• If the training error is low and the test error is high, there are too many weights

• If both training and test error are high, there are too few weights

• If the weights are all very large, there are too few weights

• Adding weights is not a panacea: do not add too many weights

• The initial weights of an untrained network must be (randomly) set over a small
range of values (say in range [−1.0, 1.0]

i
Extra heuristics
One could also add that a random weights initialization is not the most suitable
solution to guarantee the convergence of the training methods. Moreover,
initial weights set to 0.0 must be avoided as this absorbing element would
prevent from multiplicative modifications of these weights.

7.2 Running under constrained environments

Insane is designed so that evaluation tasks are decorrelated from training procedures.

When only evaluation from an initialized neural network is required (on a mobile de-
vice for example), the insane.training package and its sub-packages can be
removed from the Java library (.jar) file, as well as all unused combination and ac-
tivation functions. It is still possible to load and save neural networks and perform
evaluations.

Moreover, in the particular case of sequential training methods, Insane offers the abil-
ity to save memory by directly training from a source training information file. This file
is opened and closed at the beginning and end of each training epoch. During an
epoch, training information items are loaded one after another. The following source
code gives some guidelines to use this functionnality7:

/ / Create and i n i t i a l i z e a neura l network
NeuralNetwork nnet = . . .

6K. Swingler. Applying neural networks: a practical guide. Academic Press, 1996.
7Please refer to the SequentialTrainingMethod class documentation for further informa-

tion.
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D i s t r i b u t i o n S t r a t e g y d i s t r i b u t i o n = . . .
N e t w o r k I n i t i a l i z e r . i n i t i a l i z e ( d i s t r i b u t i o n , nnet ) ;

/ / Use a sequen t ia l t r a i n i n g method
Sequent ia lTra in ingMethod t ra in ingMethod = . . .

/ / Set your own t r a i n i n g i n fo rma t i on source f i l e
F i l e s r c F i l e = . . .

/ / Se lec t a loader which supports s i n g l e i n f o rma t i on load ing
Tra in ing In fo rmat ionLoader in foLoader = new

Defau l tT ra in ing In fo rma t ionLoader ( ) ;

/ / Perform t r a i n i n g d i r e c t l y from source f i l e
T ra in i ngCons t ra i n t s c o n s t r a i n t s = new Tra in i ngCons t ra i n t s ( ) ;
c o n s t r a i n t s . setMaxError ( . . . ) ;
c o n s t r a i n t s . setMaxEpochs ( . . . ) ;
T ra in ingResu l t s r e s u l t s = t ra in ingMethod . t r a i n ( s r cF i l e ,

TrainingMethod . ALL ITEMS , TrainingMethod . ALL ITEMS , infoLoader ,
cons t ra i n t s , nnet ) ;

7.3 Multi-threaded environments

Insane’s neural networks are not thread-safe. However, a clone() operation is
proposed so that a copy of a network can be used in each thread. This can be useful
when trying different training methods or evaluating inputs.

!

Muti-threaded evaluations
For performance reasons, the current implementation uses temporary arrays
to store evaluated data between layers as well as the final results produced
by a given neural network. This implies that each evaluation stores its results
into a single array (i.e. the new results replace the previous ones). Indeed, a
neural network must perform a single evaluation at a time.

8 More functionalities

Complementary to Insane core functionalities, an extra set of packages may be used
when other functionalities are needed.

8.1 Networks storage and retrieval

The default procedures for storing and restoring neural networks are based on a pure
textual format. A complementary package also provides an XML-based format to
represent neural networks.
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9 Conclusion

Insane is still in its early development stage. Although the current back-propagation
and resilient propagation training algorithms proved to be efficient compared with
other available libraries8, they can still be improved in various ways (adaptive param-
eters) to minimize the number of required epochs to reach the most accurate solution
(i.e. with a minimal error).

Appart from implementing new training techniques, a critical issue consists in devel-
opping efficient weights initialization schemes which guarantee the convergence of
the training methods.

Finally, Insane’s libraries and their associated documention (including the Javadoc
files) can be improved with your reviews and comments.

For more information, please visit http://www.insane-network.org.

Thank you for your help in contributing to make Insane the most efficient and powerful
open-source artificial neural network environment on the market.

– Nathanaël COTTIN

8Please refer to benchmarks for more information.
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